ОКП 43 4531

Источник переменного тока и напряжения трехфазный программируемый

«Энергоформа 3.3»

Инструкция по эксплуатации

Редакция 8

МС2.211.001 ИЭ

По вопросам продаж и поддержки обращайтесь: Астана +7(7172)727-132 Волгоград (844)278-03-48 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Казань (843)206-01-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Москва (495)268-04-70 Нижний Новгород (831)429-08-12 Новосибирск (383)227-86-73 Ростов-на-Дону (863)308-18-15 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Уфа (347)229-48-12 Единый адрес: msn@nt-rt.ru Веб-сайт: www.mars.nt-rt.ru

СОДЕРЖАНИЕ

введение	3
1. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	3
2. ОПИСАНИЕ ИСТОЧНИКА И ПРИНЦИПА ЕГО РАБОТЫ	3
2.1. Назначение 2.2. Описание 2.3. Устройство и работа	3 4 8
3. ПОДГОТОВКА ИСТОЧНИКА К РАБОТЕ	10
3.1. Эксплуатационные ограничения3.2. Распаковывание Источника3.3. Включение Источника	10 10 10
4. ПОРЯДОК РАБОТЫ	12
 4.1. РЕЖИМ УПРАВЛЕНИЯ ИСТОЧНИКОМ ОТ ПК 4.2. РАБОТА ИСТОЧНИКА В АВТОНОМНОМ РЕЖИМЕ	12 12 13 16 17
4.2.3. Меню «Установки»	
4.2.5. Меню «Библиотека сигналов»	25

Введение

Настоящая инструкция распространяется на Источник переменного тока и напряжения трехфазный программируемый «Энергоформа 3.3» (далее — Источник) и содержит сведения, необходимые для его эксплуатации. Выпускается по ТУ 4345-019-49976497–2003.

1. Требования безопасности

1.1. При работе с Источником необходимо соблюдать требования безопасности, установленные «Межотраслевыми правилами по охране труда (правилами безопасности) при эксплуатации электроустановок» (ПОТ РМ-016–2001, РД 153-34.0-03.150–00).

Пояснения символа

на лицевой панели Источника приведено в п. 3.3 «Включение Источника».

1.2. По безопасности Источник соответствует ГОСТ Р 51350-99.

1.3. Источник обеспечивает защиту от поражения электрическим током по классу I по ГОСТ Р 51350–99.

1.4. Степень защиты оболочек по ГОСТ 14254–96 — IP20. Категория монтажа — II, степень загрязнения — 2.

2. Описание Источника и принципа его работы

2.1. Назначение

2.1.1. Источник предназначен для формирования трехфазной или однофазной системы токов и напряжений в соответствии с программируемой цифровой моделью сигнала при поверке средств измерений:

• активной, реактивной и полной мощностей и энергии;

- показателей качества электроэнергии в соответствии с ГОСТ Р 51317.4.30–2008 (классы А, S и В), в том числе гармоник (до 50-й включительно) и интергармоник;
- действующих значений напряжения и тока промышленной частоты.

2.1.2. Применяется для комплектации передвижных поверочных лабораторий, поверочных комплексов при совместной работе с эталонными средствами измерения, в том числе с приборами «Энергомонитор 3.3T1» и «Энергомонитор 3.1К».

2.2. Описание

2.2.1. Источник выполнен в виде функционально законченного блока в переносном корпусе (см. рис. 2.1).

Рис. 2.1. Источник «Энергоформа 3.3»

2.2.2. Источник имеет три канала для формирования напряжений (фазные напряжения) и три независимых канала для формирования токов. Задание цифровой модели сигнала осуществляется следующими способами:

- выбором из внутреннего запоминающего устройства Источника одного из сигналов (стандартного или специальной формы) и установки его параметров;
- записью данных о сигнале в Источник из библиотеки компьютера (далее ПК) по интерфейсу RS-232 с помощью программного обеспечения «Энергоформа»;
- вручную со встроенной клавиатуры.

Отображение параметров и формы сигналов осуществляется на встроенном графическом жидкокристаллическом дисплее (далее — дисплей) либо на ПК с помощью программного обеспечения «Энергоформа».

2.2.3. Источник обеспечивает формирование токов и напряжений одно- и трехфазной сети переменного тока с параметрами и в диапазонах, указанными в табл. 2.1.

Таблица 2.1

Технические характеристики Источника «Энергоформа 3.3»

	Значение характеристики			
Наименование характеристики	Диапазон	Дискрет- ность ус- тановки	Пределы допускае- мых отклонений установленных значений	Примечание
1. Частота первой гармоники переменного тока (<i>f</i> ₁), Гц	45,070	0,01	Абсолютная: ±0,01	
2. Номинальные значения фазных/межфазных напря- жений (U _н), В	220/(220√3); 60/(60√3)		_	
3. Номинальные значения токов (<i>I</i> _н), А	0,5; 5		_	
4. Действующее значение первой гармоники напряже-	20254	0.001	Относительная:	При номинальной нагрузке
ния (U ₁), В	254264	0,001	1 %	При нагрузке 10 % от номинала
5. Действующее значение первой гармоники тока	0,0512	0.0001	Относительная: 1 %	
(<i>I</i> ₁), A	0,0050,05	0,0001	Относительная: 2 %	
6. Спектральный состав сигна	алов напряжен	ия и тока:		·
<i>Гармоники:</i> составляющие с частотой $f_k = kf_1$ (<i>k</i> от 2 до 50)	250			Количество: 49
Интергармоники: составляющие с частотой $f_k = kf_1/2$ (нечетные значения k от 1 до 101)	0,5; 1,5;, 49,5; 50,5	0,01		Количество: 51
 Среднеквадратическое знач от U₁ или I₁ 	чение спектрал	ьной соста	вляющей напряжения	и и тока,
для гармоник со 2-й по 19-ю	0100			
для гармоник с 20-й по 50-ю	050	0.01		
для интергармоник (от 0,5 до 50,5)	015	0,01		
 8. Фазовый угол между напряжениями первой гармоники разных фаз, током и напряжением пер- вой гармоники одной фазы, градус 	-179,99 +180	0,01	Абсолютная: ±2°	

НПП МАРС-ЭНЕРГО

	Значение характеристики			
Наименование характеристики	Диапазон	Дискрет- ность ус- тановки	Пределы допускае- мых отклонений установленных значений	Примечание
 9. Фазовый угол между напряжением первой и <i>n</i>-й гармоник (интергармоник) одной фазы, током первой и <i>n</i>-й гармоник (интергармоник) одной фазы, градус 	-179,99 +180	0,01		
 Коэффициент нелиней- ных искажений при генера- ции синусоидального сигна- ла напряжения, %, не более 	_	_	Относительная: 1 %	U ₁ = 20254 В, при линейной на- грузке
 Коэффициент нелиней- ных искажений при генера- 	—		Относительная: 1 %	$I_1 = 0,0512 \text{ A}^*$ $I_1 = 0,055,0 \text{ A}$
ции синусоидального сигна- ла тока, %, не более		_	Относительная: 5 %	$I_1 = 0,0050,05$ A
12. Нестабильность установ- ленного действующего зна- чения напряжения за мину- ту, %/мин, не более			Абсолютная: ±0,03%	
 13. Нестабильность установ- ленного действующего зна- чения тока за минуту, %/мин, не более 			Абсолютная: ±0,03%	
14. Нестабильность установ- ленного значения мощности за минуту, %/мин, не более			Абсолютная: ±0,05%	
15. Количество провалов или перенапряжений	от 0 до 100 000	1		
16. Длительность провала или перенапряжения (t) , с 17. Период между возникно- вением провалов или пере- напряжений $(T; T \ge t)$, с	от 0 до 600	0,001	Абсолютная: ±0,002	$f_1 = (50 \pm 1) \overline{\Gamma}$ ц
 18. Среднеквадратическое значение напряжения при провале напряжения (U_{min}), % от U₁ 	от 0 до 9,99 от 10 до 29,99 от 30 до 100	0,01	 Относительная: ±[1,0+0,5(U _н /U–1)] % Относительная: ±1 %	$f_1 = (50 \pm 1)$ Гц
 19. Среднеквадратическое значение напряжения при перенапряжении (U_{max}), % от U₁ 	от 100 до 200	0,01	Относительная: ±0,5 %	$f_1 = (50 \pm 1)$ Гц

	Значение характеристики			
Наименование характеристики	Диапазон	Дискрет- ность ус- тановки	Пределы допускае- мых отклонений установленных значений	Примечание
20. Выходная мощность ис- точника тока, ВА	5*			При токе 10 А, <i>R</i> _н = 0,05 Ом
21. Выходная мощность ис- точника напряжения, ВА	10			На нагрузке 4,8 кОм

^{*} При выходном напряжении 254 В и номинальной нагрузке в цепи напряжения максимальный ток — 7,5 А.

2.2.4. Источник обеспечивает формирование сигналов токов и напряжений в диапазонах, приведенных в табл. 2.2 и 2.3.

Таблица 2.2

Диапазоны выходных напряжений Источника

Диапазоны выходных напряжений Источника, В	Номинальные значения фазных/межфазных напря- жений усилителей тока и напряжения Источника, В
60,001–268	220/220√3
0–71,99	60/60√3

Таблица 2.3

Диапазоны выходных токов Источника

Диапазоны выходных токов Источника, А	Номинальные значения токов усилителей тока и напряжения Источника, А
0,5000–7,7	5
0–0,54999	0,5

2.3. Устройство и работа

2.3.1. Структурная схема Источника приведена на рис. 2.2.

Рис. 2.2. Структурная схема Источника

2.3.2. Основа Источника — плата центрального процессора, в состав которой входят сигнальный процессор производства фирмы «Texas Instr.», ПЛИС-матрица производства фирмы «Xilinx» и энергонезависимая flash-память. Такое решение позволяет гибко и оперативно менять программное обеспечение Источника, не затрагивая его аппаратной части.

Работа Источника основана на использовании принципа цифро-аналогового преобразования (ЦАП). Плата ЦАП представляет собой 6 независимых идентичных каналов преобразования входного цифрового 16-разрядного сигнала в аналоговый сигнал. Обсчет производится на основании 2048 точек за период 20 мс, т. е. при частоте 50 Гц на один период приходится 2048 отсчетов. Плата ЦАП вырабатывает 6 аналоговых сигналов: 3 сигнала тока и 3 сигнала напряжения, — причем токовые сигналы гальванически развязаны от всех остальных цепей Источника и друг от друга, а сигналы напряжений развязаны от других цепей, но связаны между собой единым общим проводом.

Плата процессора обеспечивает управление работой Источника:

- выработку массивов сигналов для платы ЦАП (для каждой точки 6-ти периодических кривых);
- сохранение результатов в энергонезависимой памяти Источника;
- счет времени;
- обмен с внешними устройствами (компьютерами);
- вывод результатов на дисплей;
- прием команд и данных от клавиатуры.

Клавиатура установлена на лицевую панель и соединена с платой процессора. С ее помощью осуществляется управление видом отображаемых на дисплее данных, ввод требуемых значений (форма, размах, фазовые сдвиги кривых токов и напряжений), а также выполнение других сервисных и технологических операций.

2.3.3. Блок питания состоит из источника необходимых напряжений для платы центрального процессора (+5B; +3,3B; +1,6B), отдельного источника (+5B) для питания последовательного порта RS-232 и схемы синхронизации с сетью питания (сигнал синхронизации поступает на плату центрального процессора и представляет собой меандр с частотой 50×2048 Гц).

2.3.4. Сигналы каналов тока и напряжения с выходов ЦАП поступают на входы каналов усилителей тока и напряжения соответственно.

Для защиты от короткого замыкания на выходе каждого канала напряжения установлены предохранители 0,25 А.

Управление диапазонами усилителей тока и напряжения осуществляется командами от платы центрального процессора, поступающими на реле. По командам управления происходит переключение диапазонов работы усилителей.

3. Подготовка Источника к работе

3.1. Эксплуатационные ограничения

Если Источник внесен в помещение после пребывания снаружи при температуре окружающей среды ниже минус 20 °C, то он должен быть выдержан в нормальных условиях в выключенном состоянии не менее 4 ч.

Внимание! При попадании воды или иных жидкостей внутрь корпуса использование Источника не допускается.

Внимание! Не подключенные к нагрузке выходы тока должны быть обязательно замкнуты (не оставлять без нагрузки).

3.2. Распаковывание Источника

После извлечения Источника из упаковки проводят наружный осмотр, убеждаются в отсутствии механических повреждений, проверяют наличие пломб предприятияизготовителя.

Проверяют комплектность Источника в соответствии с табл. 2.1 «Паспорта» (МС2.211.001 ПС).

3.3. Включение Источника

Внимание! В целях безопасности подключение (отключение) поверяемого и эталонного приборов рекомендуется производить при выключенном питании. В противном случае подключение (отключение) к измеряемым цепям должно производиться в соответствии с действующими правилами электробезопасноти.

Источник имеет шесть клемм (UA, UB, UC) для подключения фазных напряжений и нейтрали в цепях напряжения и шесть клемм (IA, IB, IC) в цепях тока. Цепи тока гальванически развязаны между собой и цепью напряжения. Цепи напряжения выполнены симметрично и имеют общую точку (нейтраль). Все клеммы расположены на лицевой панели Источника (см. рис. 2.1).

Внимание! Необходимо следить за тем, чтобы соединения были правильно и надежно закреплены во избежание перегрева мест контакта и возрастания переходного сопротивления.

Включение Источника производят в следующей последовательности:

- 1) подключить Источник к поверяемому и эталонному оборудованию;
- 2) включить питание поверяемого и эталонного оборудования;
- 3) включить питание Источника.

Внимание! Перед включением питания Источника убедитесь, что цепи тока замкнуты (стоят перемычки) или подключен прибор с входным сопротивлением не более 0,3 Ом.

При включении питания Источник производит самотестирование оборудования и начальную инициализацию. После завершения инициализации на дисплее индицируются товарный знак предприятия-изготовителя, наименование изготовителя, тип прибора и версия программного обеспечения (рис. 3.1).

Рис. 3.1. Дисплей после включения Источника

Нажатие на любую клавишу в этом режиме приводит к отображению на дисплее главного меню Источника (см. рис. 4.1).

Для установления рабочего режима необходимо выдержать Источник в течение 30 мин во включенном состоянии.

4. Порядок работы

Источник может работать в двух режимах:

- в режиме управления от ПК по интерфейсу RS-232 с помощью программного обеспечения «Энергоформа»;
- в автономном режиме при управлении от клавиатуры, расположенной на лицевой панели Источника.

4.1. Режим управления Источником от ПК

При управлении Источником от ПК необходимо установить на ПК программу «Энергоформа». Программа «Энергоформа» работает под операционными системами MS Windows 98, 2000, XP, Vista, Windows 7 (32-х и 64-хразрядная архитектура) (операционная система должна обеспечивать поддержку кириллицы).

При работе с программой «Энергоформа» рекомендуется совместно с Источником использовать в качестве эталонного прибора для измерений электроэнергетических величин и показателей качества электроэнергии «Энергомонитор 3.3T1» или «Энергомонитор 3.1К».

Для работы программы рекомендуется использовать ПК следующей конфигурации:

- процессор Pentium III 500 МГц или более мощный;
- не менее 64 МБ ОЗУ;
- не менее 3 МБ дискового пространства для установки программы;
- видеоадаптер с поддержкой разрешения 1024 × 768;
- CD-ROM (для установки программы);
- мышь или аналогичное устройство;
- два свободных СОМ-порта (RS-232).

Для более комфортной работы с большими объемами данных может потребоваться более мощный ПК.

Для работы программы «Энергоформа» необходимо подключить к ПК Источник и прибор «Энергомонитор 3.3T1» (или «Энергомонитор 3.1К»).

Источник автоматически переходит в режим управления от ПК при его подключении к ПК и запуске программы «Энергоформа».

Работа с прибором «Энергомонитор 3.3T1» (или «Энергомонитор 3.1К») в режиме обмена с ПК подробно описана в руководстве по эксплуатации прибора.

Порядок работы с программой «Энергоформа» подробно описан в «Программа "Энергоформа". Руководство пользователя».

4.2. Работа Источника в автономном режиме

При работе с Источником в автономном режиме управление осуществляется от клавиатуры, расположенной на лицевой панели Источника.

Порядок работы с прибором «Энергомонитор 3.3T1» (или «Энергомонитор 3.1К») в автономном режиме подробно описан в руководстве по эксплуатации прибора. Ниже описан порядок работы с Источником в автономном режиме.

4.2.1. Интерфейс оператора Источника

Интерфейс оператора Источника состоит из 18-кнопочной клавиатуры и дисплея размером 240 × 128 пикселей, расположенных на лицевой панели Источника. Они предназначены для выбора режимов работы Источника, а также просмотра и модификации параметров генерируемого сигнала. В табл. 4.1 указано назначение клавиш Источника.

Таблица 4.1

Клавиша	Выполняемая функция
«0»,, «9»	- ввод цифровых значений активного поля
·	 переход к вводу дробной части значения активного поля; ввод отрицательных значений активного поля
▲, ▼	 навигация по меню; переход между полями в окнах настройки параметров
≺, ≻	 увеличение/уменьшение числового значения активного поля; переход между полями активированной строки состояния
«ENT»	 активация выбранного пункта меню или режима строки состояния; сохранение внесенных изменений
«ESC»	 возврат к предыдущему окну; деактивация строки состояния
«F»	- активация строки состояния

Назначение клавиш Источника

При включении питания Источника на дисплее индицируется заставка (см. рис. 3.1). Нажатие на любую клавишу в этом режиме приводит к отображению на дисплее главного меню Источника (рис. 4.1).

Рис. 4.1. Главное меню Источника

Главное меню состоит из четырех пунктов:

- «Стандартный сигнал»;
- «Специальные сигналы»;
- «Установки»;
- «Библиотека сигналов».

Примечание. Интерфейс оператора может изменяться в части порядка отображения информации. Данные изменения не влияют на технические и метрологические характеристики Источника.

Независимо от того в каком из пунктов меню находится Источник, в нижней строке дисплея всегда отображается строка состояния.

Навигация по меню осуществляется клавишами ∧, ∨ (выбранный пункт меню выделяется инверсией цвета). Чтобы активировать выбранный пункт меню необходимо нажать на клавишу «ENT», для возврата к предыдущему окну необходимо нажать на клавишу «ESC». При активации выбранного пункта меню происходит либо переход во вложенное меню, либо отображается соответствующее окно настройки параметров.

В окнах настройки параметров (далее — окно) отображается в текстовом и/или графическом виде та или иная информация о параметрах генерируемого сигнала и содержатся одно или несколько изменяемых полей (далее — поле). Переход от одного поля к другому осуществляется клавишами ▲ и ▼. Активное поле выделяется инверсией цвета.

Способы изменения значений параметров:

- нажатие на клавишу ➤ приводит к увеличению значения параметра, а нажатие на клавишу < — к уменьшению. Чем дольше удерживать клавишу в нажатом положении, тем быстрее будет изменяться значение поля. Изменение значения поля ограничено установленными пределами. Если значение поля изменяется циклически, то после достижения максимума, значение поля изменится на минимальное;
- 2) с помощью цифровых клавиш «0», ..., «9» можно непосредственно ввести значение поля в установленных пределах;
- 3) чтобы ввести дробную часть числа необходимо после ввода целой части нажать на клавишу ⊡ и ввести нужное значение с помощью цифровых клавиш;
- чтобы ввести отрицательное значение необходимо первой (!) нажать клавишу
 □, после этого активному полю присвоится минимально возможное (по модулю) отрицательное значение («-1» для целочисленных полей, «-0,01» для полей, изменяющихся с дискретностью «1/100», и т. д.); далее необходимо ввести нужное значение с помощью вышеописанных правил.

Чтобы сохранить внесенные изменения, необходимо нажать на клавишу «ENT», при этом в строке состояния появится пиктограмма , сигнализирующая, что идет процесс перерасчета параметров. Дальнейшая работа возможна только после того, как эта пиктограмма исчезнет. Чтобы отказаться от изменения значений параметров необходимо нажать на клавишу «ESC», при этом произойдет возврат к предыдущему окну.

Строка состояния

В строке состояния (рис. 4.2) отображается информация об основных режимах работы Источника.

Номинальные значения включенных поддиапазонов выходных напряжений и токов усилителей тока и напряжения до и после изменения сигналов Пиктограммы основных режимов работы Источника

Рис. 4.2. Строка состояния Источника

Чтобы активировать строку состояния необходимо нажать на клавишу «F» в любом режиме работы Источника. После этого появляется возможность изменять основные режимы работы Источника. Выбор поля активированной строки состояния осуществляется клавишами ≺ и ≻ (выбранное поле выделяется инверсией цвета). Для деактивации строки состояния необходимо нажать на клавишу «ESC».

Значение пиктограмм основных режимов работы Источника:

Режим генерации:

- <u>М</u> генерация выходных сигналов включена.
- Карани и на выходах Источника поддерживаются нулевые сигналы.
 Чтобы сменить режим, необходимо перейти к пиктограмме и нажать на клавишу «ENT».

Режим смены сигнала (доступен только при 🗠):

- при активации этой пиктограммы нажатием на клавишу «ENT» происходит смена генерируемых сигналов в соответствии с произведенными изменениями, при этом в строке состояния появится пиктограмма , сигнализирующая, что идет процесс модификации параметров сигналов; дальнейшая работа возможна только после того, как эта пиктограмма исчезнет.
- М отображается при М.

Режим синхронизации с питающей сетью (доступен только при 🖾):

- Включен синхронный с питающей сетью режим работы (частота выходных сигналов определяется частотой питающей сети).
- Слежение за частотой питающей сети отключено (частота выходных сигналов равна заданной в окне «Частота» (рис. 4.8)).

Чтобы сменить режим, необходимо перейти к пиктограмме и нажать на клавишу «ENT».

Под знаком «>» отображаются текущие номинальные значения поддиапазонов, включенных на усилителях, а под знаком « $P_{RO.}$ » — номинальные значения поддиапазонов, которые будут включены при выдаче на генерацию новых (измененных) сигналов. После выполнения команд $\overline{\bigcirc}$ или $\overline{\bigcirc}$, эти значения становятся равными.

При незавершенном процессе модификации/перерасчета параметров рядом с пиктограммами основных режимов работы Источника отображается пиктограмма (рис. 4.3). В течение этого времени Источник не реагирует на нажатие клавиш встроенной клавиатуры. Дальнейшая работа возможна только после того, как эта пиктограмма исчезнет.

Рис. 4.3. Строка состояния Источника при незавершенном процессе модификации/перерасчета параметров

Если текущее окно имеет контекстно-зависимую дополнительную функцию, то при активации строки состояния в ее левой части будет отображаться название этой функции (рис. 4.4). Чтобы активировать дополнительную функцию, необходимо нажать на клавишу «ENT».

Рис. 4.4. Активированная строка состояния Источника с дополнительной функцией

4.2.2. Режим «Стандартный сигнал»

В этом режиме на выходе Источника формируется синусоидальный сигнал. Значения фазовых сдвигов между напряжениями разных фаз устанавливаются равными 120°.

- В окне режима «Стандартный сигнал» (рис. 4.5) можно задать:
- основную частоту (частоту первой гармоники) (диапазон значений от 42,50 до 70,00 Гц с шагом 0,01 Гц);
- значения фазовых сдвигов между токами и напряжениями для всех фаз (диапазон значений от –179,99° до +180,00° с шагом 0,01°);
- значения напряжений (диапазон значений от 0 до 268 В с шагом 0,001 В);
- значения токов (диапазон значений от 0 до 8 A с шагом 0,00001 A).
- С помощью переключателей 🗵 можно отключать (обнулять) токи выбранной фа-

зы. Для этого необходимо выбрать нужный переключатель с помощью клавиш ∢, ▶ и нажать на клавишу «ENT».

Рис. 4.5. Окно задания параметров стандартного сигнала

Для перерасчета форм сигналов необходимо нажать на клавишу «ENT». Перерасчет может занять длительное время (до 5 с в зависимости от форм перерасчитываемых сигналов и от количества каналов, по которым должны быть перерасчитаны формы сигналов). В процессе перерасчета в строке состояния отображается пиктограмма .

Примечание. Все изменения, произведенные в режиме «Стандартный сигнал», автоматический отображаются в режимах «Субгармоники» (п. 4.2.3.2) и «Фазовое управление» (п. 4.2.3.3) и наоборот.

4.2.3. Меню «Специальные сигналы»

Меню «Специальные сигналы» (рис. 4.6) состоит из шести режимов, позволяющих задавать различные формы сигналов:

- «Произвольная форма»;
- «Субгармоники»;
- «Фазовое управление»;
- «Провалы и перенапряжения»;
- «Фликер»;
- «Библиотека сигналов».

Рис. 4.6. Меню «Специальные сигналы»

4.2.3.1. Меню «Произвольная форма»

Это меню (рис. 4.7) открывает доступ к установке произвольных значений параметров сигналов на выходах Источника (в пределах допустимых значений):

- частоты;
- межфазных углов;
- формы сигнала;
- действующих значений.

Кроме того, здесь же включается / отключается режим интергармоник.

ПРОИЗВОЛЬНАЯ Ф	OPMA
частота	
Межфазные угль	l
Форма сигнала	
<u>Лейств.</u> значен	เนя
Интергармоники	і выкл
D 0,50A PRO-0,50A	$ \wedge \square \otimes$

Рис. 4.7. Меню «Произвольная форма»

Режим «Частота»

В окне режима «Частота» (рис. 4.8) задается значение основной частоты (частоты первой гармоники) генерируемой трехфазной системы напряжений и токов при отключенном режиме синхронизации с питающей сетью (). При включенном режиме синхронизации с питающей сетью () частота выходных сигналов определяется частотой питающей сети и значение частоты, введенное в данном окне, не принимается к исполнению.

Рис. 4.8. Окно задания частоты сигнала

Окно содержит единственное изменяемое поле «Частота». Диапазон значений — от 42,50 до 70,00 Гц с шагом 0,01 Гц. В процессе изменения значения частоты на дисплее отображаются значение текущей частоты и осциллограмма сигнала с текущей частотой.

Режим «Межфазные углы»

В окне режима «Межфазные углы» (рис. 4.9) задаются значения фазовых сдвигов между напряжениями разных фаз, а также между токами и напряжениями одной фазы (фазными углами между каналами, по определению, считаются фазные углы между первыми гармониками сигналов в каналах).

Межфазные	ys.	лы,	°:	
↑ U _θ	UΒ	: 1	.20	, 00
U	Uc	: 1	.20	, 00
([/] U .	U _e	: 1	.20	, 00
	$\mathbf{I}_{\mathbf{\theta}}$:	30	, 00
	Ι _B	:	30	,00
Ū.	Ιc	:	30	,00
D a 220B PRO- a 22	20B 500		\neg	\mathbb{C}

Рис. 4.9. Окно задания межфазных углов

Окно содержит 6 изменяемых полей, соответствующих углам между первыми гармониками генерируемых сигналов. Диапазон значений — от –179,99° до +180,00° с шагом 0,01°. Данные поля допускают циклическое изменение своих значений.

Изменения значений полей отображаются на векторной диаграмме слева. Векторы, угол между которыми в данный момент выбран для изменения, отображаются в виде стрелок.

Режим «Форма сигнала»

Данное окно имеет 4 варианта представления информации о форме сигнала:

- «Осциллограмма»;
- «Спектр (линейный)»;
- «Спектр (логарифмический)»;
- «Фазы гармоник».

Переключение между вариантами представления осуществляется через дополнительную функцию данного окна «Изменить вид» нажатием клавиши «ENT». Эта функция становится доступной при активации строки состояния. В окнах режима «Форма сигнала» задается форма сигнала в каждом из шести выходных каналов Источника.

В окне «Осциллограмма» (рис. 4.10) отображается осциллограмма текущего сигнала в выбранном канале. Информация, отображаемая в данном окне, зависит от того, включен или выключен режим интергармоник.

Рис. 4.10. Окно «Форма сигнала» в варианте представления «Осциллограмма» (слева — режим интергармоник выключен, справа — режим интергармоник включен)

Окно содержит 4 изменяемых поля:

- номер гармоники («n») для выбора номера гармоники сигнала в активном канале:
 - Режим интергармоник выключен. Выбор осуществляется из ряда 1, 2, ..., 49, 50.
 - Режим интергармоник включен. Выбор осуществляется из ряда 0,5; 1; 1,5; 2; ..., 50; 50,5.

Выбор осуществляется клавишами ◀, ▶;

- относительная амплитуда выбранной гармоники («U_n» или «I_n») (устанавливается в процентах от амплитуды первой гармоники):
 - Режим интергармоник выключен. Диапазон значений от 0 до 100,00 % с шагом 0,01 %.
 - Режим интергармоник включен. Диапазон значений от 0 до 15,00 % с шагом 0,01 %.
- относительная фаза выбранной гармоники («φ_{1-n}») (устанавливается относительно первой гармоники сигнала в выбранном канале; диапазон значений от –179,99° до 180,00° с шагом 0,01°);
- название канала (для переключения между шестью каналами).

В окне «Спектр (линейный)» (рис. 4.11) отображается спектрограмма текущего сигнала в выбранном канале в линейном масштабе.

Рис. 4.11. Окно «Форма сигнала» в варианте представления «Спектр (линейный)»

В окне «Спектр (логарифмический)» (рис. 4.12) отображается спектрограмма текущего сигнала в выбранном канале в логарифмическом масштабе (в децибелах), но числовые значения относительных амплитуд гармоник отображаются и модифицируются в линейном масштабе (в процентах относительно первой гармоники).

Рис. 4.12. Окно «Форма сигнала» в варианте представления «Спектр (логарифмический)»

В окне «Фазы гармоник» (рис. 4.13) отображается спектрограмма углов сдвига фаз гармоник относительно первой гармоники сигнала в выбранном канале.

фазы г	армоник	n: 15
	¦- +180 °	Un ,%:
	¦- +90°	0,00
: 	<u> </u>	$\boldsymbol{\varphi}_{i\cdot n}$,°:
	-⊹ -90 °	0,00
	180 °	Канал:
0 20	40	U _e
D 0,220B	₽®0-0,50A	

Рис. 4.13. Окно «Форма сигнала» в варианте представления «Фазы гармоник»

Окна «Спектр (линейный)», «Спектр (логарифмический)» и «Фазы гармоник» содержат только два изменяемых поля:

- номер гармоники («n»); выбор номера гармоники осуществляется клавишами ▲ и ▼, при этом курсор на спектрограмме перемещается на спектральную линию, соответствующую выбранной гармонике;
- «Относительная амплитуда выбранной гармоники» («U_n» или «I_n») (для окон «Спектр (линейный)» и «Спектр (логарифмический)»); «Относительная фаза выбранной гармоники» («φ_{1-n}») (для окна «Фазы гармоник»).

Выбор канала осуществляется только в окне «Осциллограмма».

Режим «Действующие значения»

В окне режима «Действующие значения» (рис. 4.14) задаются действующие значения первых гармоник выходных сигналов.

Окно содержит 6 изменяемых полей для задания действующих значений первых гармоник сигналов по каждому из 6 каналов. Диапазон значений полей, соответствующих каналам напряжения, — от 0 до 268 В с шагом 0,001 В. Диапазон значений полей, соответствующих каналам тока, — от 0 до 8 А с шагом 0,00001 А.

Рис. 4.14. Окно задания действующих значений первых гармоник выходных сигналов

Включение / отключение режима интергармоник

Для включения / отключения режима интергармоник необходимо выделить данный пункт меню и нажать на клавишу «ENT», при этом справа появится соответствующая надпись: «вкл» — режим включен, «выкл» — режим выключен.

Примечание. При включенном режиме интергармоник время перерасчета сигнала увеличивается.

4.2.3.2. Режим «Субгармоники»

В этом режиме на выходах тока Источника IA, IB, IC формируются сигналы, вид которых представлен на рис. 4.15.

Рис. 4.15. Форма выходного сигнала в режиме «Субгармоники» (Т — период сигнала)

В окне режима «Субгармоники» (рис. 4.16) можно задать:

- основную частоту (частоту первой гармоники);
- значения фазовых сдвигов между токами и напряжениями для всех фаз;
- значения напряжений и токов.

С помощью переключателей ⊠ можно отключать (обнулять) токи выбранной фазы. Для этого необходимо выбрать нужный переключатель с помощью клавиш *<*, *>* и нажать клавишу «ENT».

Значения фазовых сдвигов между напряжениями разных фаз устанавливаются равными 120°.

Рис. 4.16. Окно задания параметров субгармоник

4.2.3.3. Режим «Фазовое управление»

В этом режиме на выходах тока Источника IA, IB, IC формируются сигналы, вид которых представлен на рис. 4.17.

Рис. 4.17. Форма выходного сигнала в режиме «Фазовое управление» (Т — период сигнала)

В окне режима «Фазовое управление» (рис. 4.18) можно задать:

- основную частоту (частоту первой гармоники);
- значения фазовых сдвигов между токами и напряжениями для всех фаз;
- значения напряжений и токов.

С помощью переключателей ⊠ можно отключать (обнулять) токи выбранной фазы. Для этого необходимо выбрать нужный переключатель с помощью клавиш *<*, *>* и нажать клавишу «ENT».

Значения фазовых сдвигов между напряжениями разных фаз устанавливаются равными 120°.

Рис. 4.18. Окно задания параметров фазового управления

4.2.3.4. Режим «Провалы и перенапряжения»

В окне режима «Провалы и перенапряжения» (рис. 4.19) задаются следующие параметры:

- количество провалов или перенапряжений («п») (диапазон значений от 0 до 100 000);
- длительность одного провала или перенапряжения («t») (диапазон значений от 0 до 600 с, шаг — 0,001 с);
- период между возникновением провалов или перенапряжений («Т») (диапазон значений — от 0 до 600 с, шаг — 0,001 с; Т не может быть меньше t);
- смещение по времени относительно запуска первого провала или перенапряжения («t_n») (диапазон значений от 0 до 600 с, шаг 0,001 с);
- фазовый сдвиг провала или перенапряжения («φ_n») (диапазон значений от –179,99° до 180,00° с шагом 0,01°);
- привязка к полупериоду («Прив. к пп»). При активации этого пункта нажатием клавиши «ENT» после перерасчета сигналов начало каждого провала или перенапряжения будет привязываться к полупериоду. *Рекомендуется использовать при задании фазового сдвига*;
- величина провала (от 0 до 100 %) или перенапряжения (от 100 до 200 %) для каждой фазы (U_A, U_B, U_C) (шаг — 0,01 %).

Рис. 4.19. Окно задания параметров провалов и перенапряжений

В этом режиме предел по напряжению всегда устанавливается равным 220 В.

4.2.3.5. Режим «Фликер»

В этом режиме на выходы Источника подаются колебания напряжения со следующими характеристиками:

Номер	Число изменений в минуту	Относительное изменение напряжения ΔU/U, %
1	1	2,720
2	2	2,210
3	7	1,460
4	39	0,905
5	110	0,725
6	1620	0,402

Параметры сигнала задаются путем выбора в окне режима «Фликер» (рис. 4.20) номера, соответствующего одному из шести вариантов из приведенной таблицы, и мно-

жителя, на который умножается $\Delta U/U$. Множитель изменяется в пределах от 0,01 до 25,00 с шагом 0,01.

Рис. 4.20. Окно задания параметров фликера

4.2.3.6. Меню «Библиотека сигналов»

См. п. 4.2.5.

4.2.4. Меню «Установки»

Меню «Установки» (рис. 4.21) состоит из двух пунктов:

- Скорость по RS-232;
- Язык.

ЭСТАНОВКИ				
Скорость	no	RS2	32	
Язык				
D 5,00B Pro-5 ²	20B 00A		XXX	

Рис. 4.21. Меню «Установки»

4.2.4.1. Скорость по RS-232

После активации пункта «Скорость по RS-232» появляется возможность выбора значения скорости обмена с ПК по последовательному интерфейсу RS-232 (рис. 4.22). Возможна установка следующих значений скорости: 115 200, 38 400, 19 200, 9600 бит/с.

Выбор нужного значения осуществляется с помощью клавиш ▲, ∨ и «ENT». Выбранное значение скорости отображается в верхней строке дисплея.

Скорость: 11	.5200	бод
115200	бод	
38400	<u>бод</u>	
19200	<u> 609</u>	
9600	609	
N 220B L 220B		0. 1 7. 552
↓ 5,00A ¹ R0-5,00A		^vQ@k®

Рис. 4.22. Меню выбора скорости обмена с ПК по интерфейсу RS-232

4.2.4.2. Язык

После активации пункта «Язык» появляется возможность смены языка отображения информации на дисплее прибора (рис. 4.23). Можно выбрать либо русский, либо английский язык. Выбор нужного языка осуществляется с помощью клавиш ∧, ∨ и «ЕNT».

Язык	
English	
Engrish Pycckilli	
FSCORUU	
▶ 5,00A PRO-5,00A	

Рис. 4.23. Меню выбора языка

4.2.5. Меню «Библиотека сигналов»

Меню «Библиотека сигналов» (рис. 4.24) состоит из двух пунктов:

- «Загрузить сигнал» (для загрузки ранее сохраненного сигнала);
- «Сохранить сигнал» (для сохранения значений параметров текущего сигнала).

БИБЛИОТЕКА	СИГНАЛОВ
Загрузить	сценал
COMPARAMO	Сценал
▶ ₀ ,508 Pro-0,50	

Рис. 4.24. Меню библиотеки сигналов

После активации нужного пункта происходит переход в меню выбора библиотеки (рис. 4.25). Всего существует 12 библиотек по 10 сигналов в каждой. Выбор необходимой библиотеки осуществляется клавишами ▲ и ▼, а переход между страницами — клавишами ◀ и ►.

Рис. 4.25. Меню выбора библиотеки (страницы 1 и 2)

После выбора библиотеки появляется возможность выбрать один из 10 сигналов этой библиотеки (рис. 4.26). В меню отображаются названия уже сохраненных сигналов, а свободные ячейки для сохранения новых сигналов обозначаются надписью «Нет данных». Выбор сигнала осуществляется клавишами ∧ и ∨, а переход между страницами — клавишами ≺ и ≻.

выбор сигнала	
Сигнал 1	
Hem Әанных	
Нет данных	
неш данных Нет данных	
D 220B PR0-0,50A	

Рис. 4.26. Меню выбора сигнала (страница 1)

Если был активирован пункт «Загрузить сигнал», то после выбора в библиотеке одного из сохраненных сигналов происходит загрузка значений параметров этого сигнала в режим «Произвольная форма», а краткая информация о нем отображается на дисплее (рис. 4.27).

Загрузить сигнал						
Cua	енал	1				
	I	, А		ι	J, E	}
А	0,	5300	20	5	5, C	000
В	0,	5300	20	5	5, e	000
С	0,	5300	20	5	5, e	000
Частота: 45,00 Гц						
b_{0}^{2}	20B 50A	PRO-0,	60B 50A		\sim	(W)×

Рис. 4.27. Просмотр параметров загруженного сигнала

Если был активирован пункт «Сохранить сигнал», то после выбора в библиотеке свободной ячейки для сохранения сигнала или уже сохраненного сигнала для его перезаписи на дисплее отображается экранная клавиатура для ввода названия (рис. 4.28).

B6e∂um	е назб	Ванι	le
Сигнал	1		
бвгде	ЖЗИЙК.	лмно	прсту
ФХЦЧШЩ	ъырэю	яабе	859ежз
ийклмн	onpcm	9ΦΧι	ԼՎԱԱՆԵՍ
ьэюя01	23456'	789.	,:+-=
?!()/%	<u> </u>	<u>-9де</u>	лить
D ₀ ,50Å	₽®0-0,50A		

Рис. 4.28. Экранная клавиатура для ввода названия сигнала

Название сигнала может состоять максимум из 20 символов.

Клавиши ∧, ∨, ≺ и ≻ служат для выбора необходимого символа.

Клавиша «ENT» служит для ввода символа.

Чтобы удалить последний символ необходимо с помощью клавиш ∧, ∨, < и > выбрать на экранной клавиатуре слово «УДАЛИТЬ» и нажать на клавишу «ENT».

Окончание ввода имени и сохранение сигнала происходят при выборе на экранной клавиатуре слова «ОК» и нажатии на клавишу «ENT».

По вопросам продаж и поддержки обращайтесь:

Астана +7(7172)727-132 Волгоград (844)278-03-48 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Казань (843)206-01-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Москва (495)268-04-70 Нижний Новгород (831)429-08-12 Новосибирск (383)227-86-73 Ростов-на-Дону (863)308-18-15 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Уфа (347)229-48-12 Единый адрес: msn@nt-rt.ru Веб-сайт: www.mars.nt-rt.ru